WikiSort.ru - Еда

ПОИСК ПО САЙТУ | о проекте
Микрофотография возбудителя смертельно опасного отравления ботулизма и биологического контаминанта, бактерий Clostridium botulinum, продуцирующих сильнейшие из известных природных токсинов — ботулотоксины (ЛД50 некоторых типов ботулотоксинов составляет десятки пикограммов на 1 кг веса (40—80×10−12/кг)). На фотографии отчётливо видны так называемые «барабанные палочки» (терминально и субтерминально расположенные споры), характерные для рода Clostridium. Препарат окрашен генцианвиолетом. Излюбленными пищевыми продуктами, которые контаминируют клостридии, являются овощные консервы и мясные субпродукты (в особенности колбасы с кровью).

Контаминáнт (от лат. contaminant — примесь, также загрязняющий агент) — нежелательный биологический агент (микроорганизмы) либо химическое соединение, смесь соединений, обладающие высокой биологической активностью (аллерген, иммуносупрессор, канцероген, мутаген, тератоген, токсин или в общем случае ксенобиотик) либо радиоактивное вещество (радионуклид), присутствие которых в сырье и пищевых продуктах несвойственно и, несомненно, может оказывать негативное воздействие на организм и, как следствие, нести угрозу для здоровья и жизни человека.

Термин контаминант употребляется в основном в микробиологии (синоним термина обсеменение) и производстве пищевых продуктов. В большинстве случаев загрязнение пищевого продукта контаминантами является причиной алиментарных расстройств ЖКТ у человека (пищевые интоксикации).

Контаминанты обладают высокой подвижностью и скоростью миграции и, тем самым довольно легко проникают в организм человека[1].

Не следует путать термины контаминант и ксенобиотик. Первый означает любой загрязняющий агент продуктов питания и попадает в организм исключительно алиментарным путём (т.е. с пищей), в то время, как второй термин означает любое чужеродное вещество, попавшее в организм человека не обязательно алиментарным путём, например, воздушным (респираторным) или через кожу (трансдермально). Любой контаминант это ксенобиотик, но не каждый ксенобиотик это контаминант.

Биологические контаминанты

Колос пшеницы (справа), поражённый пшеничной паршой. Возбудителем является микроскопический плесневый гриб fusarium graminearum, продуцирующий вомитоксин.

Биологические, также природные или естественные контаминанты — нежелательные микроорганизмы (вирусы, патогенные и условно-патогенные бактерии, микроскопические грибы, простейшие, споры микромицетов итд.), а также их продукты метаболизма (например, ботулотоксин, продуцируемый Clostridium botulinum или охратоксины — группа микотоксинов, вырабатываемые некоторыми видами микроскопических плесневых грибов рода Аспергилл и Пеницилл), присутствующие в пищевых продуктах. Большое количество биологических контаминантов приходится на бактерии и их метаболитов (токсинов, антибиотиков). К этой группе можно отнести токсины морских животных, употребляемых в пищу (например, тетродотоксин из собаки-рыбы или фугу), а также токсины растений или фитотоксины (например, рицин, из ядер клещевины или амигдалин из косточек горького миндаля, абрикоса — ядовитый гликозид) и грибов (аматоксины, фаллотоксины и др.).

Химические контаминанты

К химическим или антропогенным контаминантам относят разнообразные химические соединения или их смеси, чужеродного происхождения (являются результатом деятельности человека — ксенобиотиками), обладающие высокой биологической активностью, присутствие которых в пищевых продуктах может серьёзно ухудшить здоровье или даже привести к летальному исходу. Подразделяются на две группы: неорганические и органические (составляют большую часть). Примером таких соединений являются метанол, аммиак, формальдегид, соединения мышьяка, соединения бериллия и тяжёлых металлов (бария, кадмия, сурьмы, меди, свинца, таллия, ртути итд.), поверхностно-активные вещества (моющие средства или детергенты), пестициды (например, хлорорганические: группы альдрина, гексахлоран, ДДТ; паракват; фосфорорганические: фосдрин, ДФФ, тиофос и др.) и удобрения (основу, которых составляют нитраты), нефтепродукты (топливо, синтетические масла, бензол и его производные, и другие ароматические соединения), органические растворители, фенолы и их производные (в частности, фенолформальдегидные смолы), эпоксид этилена, пластмассы и полимеры (ПВХ, поливинилиденхлорид итд.), искусственные непищевые красители, лаки и краски, продукты сгорания биомассы, диоксины, канцерогены антропогенного происхождения (полициклические ароматические углеводородыбензпирен, бензантрацен, ДМБА, ароматические амины и др.) и многие другие.

Радиоактивные контаминанты

Радиоактивные контаминанты представляют собой особую группу, которая включает природные радиоактивные элементы (уран, торий, радий, полоний, протактиний и многие другие) и их соединения, а также радионуклиды антропогенного происхождения, таких, как например, короткоживущий изотоп 131I (Т1/2 = 8 суток), и более продолжительно живущие 90Sr (Т1/2 ~ 29,15 лет), 137Cs (Т1/2 ~30,2 лет). Основные негативные биологические эффекты радиоактивных контаминантов проявляются в высокой ионизации пищевых продуктов. Радиоактивные соединения, попадая внутрь организма вместе с контаминированными продуктами, вследствие ионизации и высокой чувствительности к ней живых клеток, могут вызывать серьёзные поражения ЖКТ (особенно печени), снижение или подавление репродуктивной функции (гипоспермия, азоспермия, бесплодие и др.), мутагенез и тератогенез, снижение функций эндокринной системы (особенно щитовидной железы), накопление в мышцах, костных тканях и дальнейшее усиление дегенерации миелоидной ткани, как следствие — лучевая болезнь, лейкозы и другие злокачественные новообразования системы гемопоэза (кроветворения), соединительных тканей (кости, хрящи, суставы итд.), а также пищеварительной, эндокринной и половой систем. Особенно опасен в этом отношении стронций-90, который легко замещает кальций в костях, тем самым повышается риск возникновения их ломкости (остеомаляция, остеопороз), а также приводит к возникновению радиогенной остеосаркомы (вследствие высокой активности). Бóльшую опасность представляет хроническое (долговременное) воздействие радиоактивных контаминантов.

В последние десятилетия уровень радионуклидов в атмосфере непрерывно повышается, это связано прежде всего с увеличением производства ядерного топлива и возникновением катастроф на АЭС (прежде всего это Чернобыльская катастрофа 1986 года и катастрофа 2011 года японской атомной станции Фукусима-1).

Контаминация пищевых продуктов

Контаминация пищевых продуктов — процесс загрязнения контаминантами, приводящий к нецелесообразности употребления, порчи и изменениям органолептических свойств продуктов (изменение вкуса, внешнего вида, консистенции, запаха, цвета и, как следствие снижение пищевой ценности) и повышения опасности для здоровья и жизни, в случае алиментарного применения данных продуктов.

Существует большое количество путей поступления контаминантов из внешней среды в сырьё и пищевые продукты. Основные из них:

  • Почвенный, таким путём в растительное сырьё и сельскохозяйственные продукты проникают нитраты, тяжёлые металлы и их соединения, хлорорганические пестициды, диоксины, радионуклиды.
  • Водный, примером служат наличие вируса гепатита в питьевой воде или пресноводные и морские виды рыб, а также морепродукты (крабы, моллюски и др.) которые способные накапливать тяжёлые металлы, пестициды, нефтепродукты, ПАВ, ртутьорганические соединения, и многие другие контаминанты
  • Воздушный, характерен для процессов возделывания сельскохозяйственных культур, которые могут поглощать из воздуха многие токсичные вещества —диоксины, нитрозные газы, аммиак, формальдегид и многие другие.

Помимо указанных путей, контаминанты могут проникать в пищевые продукты и во время технологической обработки. Следовательно, контаминация может происходить практически на всех этапах производства, хранения и транспортировки (реализации) пищевых продуктов.

Также возможна преднамерная и диверсионная контаминация, направленные на устранение нежелательных физических лиц (путём отравления пищевых продуктов биологическими агентами, радионуклидами или боевыми отравляющими веществами, например, отравление Литвиненко полонием-210, отравление Ющенко диоксинами) и нанесение серьёзного урона продовольственной безопасности государству (используются также различные биологические, химические или радиоактивные контаминанты).

Действия контаминантов на организм человека

Ангиоэдема, также ангионевротический отёк или отёк Квинке у ребёнка, одна из аллергических реакций на содержащиеся в пищевых продуктах специфические антигены — аллергены.
Хронический афлатоксикоз (хроническая интоксикация афлатоксинами) почти в 100% случаев вызывает цирроз печени и гепатоцеллюлярную карциному. На снимке макропрепарат печени человека, с тотальным циррозом и локализованной карциномой печени.
Типичная картина ботулизма у 14-летнего ребёнка. Отчётливо виден двусторонний офтальмоплегический паралич (офтальмоплегия) и птоз верхних век. Сознание сохранённое.
Виктор Ющенко через 1,5 месяца после отравления 2,3,7,8-ТХДД. Отчётливо видны папулы, следы от пустул и поражение кожи лица — хлоракне.

На организм человека, действия оказываемые контаминантами, подразделяются на:

Количественной характеристикой токсического воздействия контаминантов является ЛД50. По токсическому воздействию (значения ЛД50 даны в мг/кг) контаминанты делятся на:

  • Низкотоксичные (слаботоксичные) (>1500)
  • Умеренно-токсичные (1500-150)
  • Высокотоксичные (150-15)
  • Чрезвычайно токсичные (<15).

Большую опасность представляют высокотоксичные и чрезвычайно токсичные контаминанты, которые могут оказывать негативные воздействия в крайне низких концентрациях (10-2—10-6 кг и менее на кг веса).

Патофизиологические эффекты, оказываемые контаминантами

Наиболее частые патофизиологические эффекты, оказываемые контаминантами:

  • Токсичность — свойство негативно влиять на физиологические и биохимические процессы, протекающих в нормальных клетках, результатом которого является обратимые или необратимые изменения, нарушения или даже ингибирование (подавление) данных процессов, и как следствие смерть клеток и организма в целом. Многие, если не большинство контаминантов обладают токсичностью. Токсичность зависит от целого ряда физиологических и токсико-химических факторов, главные из которых, возраст, пол, количество токсичных веществ поступивших в организм, период действия, период выведения, тропность, комплексообразование, способность к гидролизу, биоаккумуляция, тканевая или органная специфичность и другие.
  • Альтеративный воспалительный процесс — нарушения целостности структуры клеток т.е их повреждения, возникающие в результате воздействия биологических агентов и/или химических соединений (включая радиоактивные) и, последующие за ними некролитический путь смерти, деструктивных клеток. Многие контаминанты обладают альтеративным эффектом.
  • Канцерогенное воздействие или канцерогенность — свойство химических соединений или их смесей, а также биологических агентов, включая вирусы вызывать злокачественные заболевания организма человека. К этой группе относятся ПАУ, которые образуются в результате термической обработки (при жарке) мяса, нитрозамины[22](образуются из нитратов и нитритов), диоксины (ТХДД), соединения мышьяка, кадмия и шестивалентного хрома, афлатоксины, бензол.
  • Мутагенное воздействие или мутагенность — свойство негативного воздействия химических соединений, физических факторов или биологических агентов на генетический аппарат клеток, следствием которого являются мутации. Генотоксичность — предельная форма мутагенности, при которой происходят нарушения целостности структуры молекул ДНК (вследствие встраивания ксенобиотических молекул в молекулу ДНК — ковалентного или интеркаляции), вплоть до утраты генов или деструкции (разрушения). Часто мутагены могут быть канцерогенами и/или тератогенами. Многие диоксины, и в особенности ТХДД являются сильными мутагенами, такими же свойствами обладают многие ароматические углеводороды и их производные (бензол, ДМБА, метилхолантрен) и органические перекисные соединения.
  • Иммуносупрессия или иммунодепрессивный эффект выражается в частичном (вторичные иммунодефицитные состояния или ВИДС) или полном подавлении функций иммунной системы[23][24] (например, иммунодефицитный микотоксикоз). Данным эффектом обладают многие микотоксины, некоторые виды вирусов.
  • Тератогенное воздействие — негативный эффект воздействия тератогенов на генетический аппарат плода, результатом, которого являются мутации и аномальные морфологические изменения тела (врожденные уродства). Диоксины обладают высоким тератогенным и эмбриотоксичным воздействием, также этим воздействием обладают охратоксины, многие канцерогены, например, метилхолантрен.
  • Аллергическое воздействие — происходит при действии специфических антигенов, вызывающих аллергическую реакцию. Некоторые аллергические реакции могут быть очень быстрыми и опасными для жизни, как, например, анафилаксия. Примером могут служить антигены некоторых видов двустворчатых моллюсков (мидии, устрицы и др.), морских рыб, молока, употребляемых в пищу.
  • Гепатотоксичность — негативный эффект воздействия некоторых биологических агентов, физических факторов и химических соединений на клетки паренхимы печени — гепатоциты. Выражается в дегенерации и некролитическом процессе гибели клеток паренхимы печени, как следствие гепатиты и цирроз. Гепатотоксичностью обладает некоторые микотоксины (афлатоксины, Т-2 токсин, патулин), токсины бледной поганки, этанол, вирусы гепатита.
  • Нейротоксичность — свойство химических соединений негативно влиять (вплоть до летального исхода) на процессы и функции клеток (нейроны) нервной системы. Одними из следствий такого влияния являются парезы и параличи. Например, метанол обладает нейродегенеративным воздействием на зрительный нерв и необратимо поражает его, также этим воздействием обладают пестициды (группы альдрина, фосфорорганические соединения), некоторые токсины бактерий (ботулотоксин) и беспозвоночных (тетродотоксин, октопотоксины, сакситоксин итд.), ртутьорганические соединения.
  • Нефротоксичность — негативный эффект воздействия химических соединений или биологических агентов на клетки почки (нефроны), следствием которого являются повреждения нефронов и/или их смерть. Охратоксины, тяжёлые металлы, соединения мышьяка (арсин и др.), аматоксины проявляют нефротоксические свойства.
  • Гематотоксичность — негативный эффект от воздействия различных химических соединений (включая радиоактивные) и/или биологических агентов (включая их продукты метаболизма) на функции клеток крови, их качественные характеристики и состав. Например, нитраты и нитриты обладают гематотоксичностью, вызывают резкое падение уровня гемоглобина (метгемоглобинемия) в эритроцитах, переводя его в неактивную для переноса кислорода форму, бензол вызывает лейкопении и гемолитическую анемию, такими же свойствами обладает и анилин, но действует гораздо медленее. Миелотоксичность является частным случаем гематотоксичности и выражается в негативном эффекте воздействия химических соединений, радионуклидов или биологических агентов на клетки миелоидной ткани красного костного мозга, повреждая их вплоть до полной деструкции (разрушения структур) или трансформации в опухолевые.
  • Антибиотическое действие — негативный эффект воздействия на микрофлору кишечника биологически активных соединений, следствием которого является снижение числа бактерий кишечника вплоть до полной стерилизации. Многие антибиотики обладают низкой селективностью, и могут существенно влиять на количество бактериальной микрофлоры, данное свойство крайне негативно сказывается на функционировании ЖКТ (дисбактериоз, диарея, нарушения электролитного баланса, итд.). Помимо антибиотиков, данным эффектов обладают сульфаниламидные препараты, препараты нитрофурана и другие.
  • Цитотоксичность — свойство химических соединений, физических факторов и/или биологических агентов негативно воздействовать на определённые виды клеток (например на клетки энтероцитов), вызывая их повреждения или смерть. Таким свойством обладают токсины Коли и токсины бледной поганки.
  • Политропия или политропное воздействие, также эффект комбинированного воздействия — негативный эффект воздействия токсичных соединений или биологических агентов на многие органы, систему органов или на весь организм. Включает в себя совокупность разнообразных патофизиологических процессов и поэтому является наиболее опасным для здоровья или жизни человека. Таким свойством обладают некоторые радиоактивные элементы, диоксины, тяжёлые металлы и их соединения (ртуть, свинец, таллий, радий, полоний итд.).

Причины контаминации пищевых продуктов

Основные причины, из-за которых возникает контаминация пищевых продуктов это не соблюдение или нарушения, а также отсутствие систем менеджмента безопасности и стандартов качества пищевых продуктов (HACCP, ISO 22000:2005 итд.), ГОСТов, санитарно-гигиенических норм и правил (СанПиН) или иных нормативно-правовых актов, установленных и контролируемых действующим законодательством государства, происходящих при обработке сырья или производстве пищевых продуктов.

Наглядный пример загрязнения реки продуктами жизнедеятельности, Найроби, Кения

Гигиенический аспект контаминации пищевых продуктов непосредственно сопряжён с экономическим. Обеспечение большинства населения стран Африки, Латинской Америки, некоторых стран Азии (Индия, Бангладеш, Индонезия итд.) чистой питьевой водой и продовольственными продуктами является одной из самых сложных проблем. Во многих регионах Африки и Азии, нерациональное использование водных ресурсов (загрязнение воды продуктами жизнедеятельности и/или нефтепродуктами, сложность процесса очистки или вовсе её отсутствие), частое применение пестицидов в сельском хозяйстве, отражается на качестве продуктов питания (низкая пищевая ценность, большое количество контаминантов, как следствие частые интоксикации и высокий уровень смертности), происходят частые инфекционные заболевания (холера, амёбиаз, тиф, кишечные токсоинфекции, итд.), наблюдается низкая осведомлённость населения об использовании чистой питьевой воды (в некоторых регионах Африки она отсутствует) и использовании воды в процессах кулинарной обработки (вода обычно неочищенная (не проходит процессы очистки) и практически не пригодна для употребления, так как содержит большое количество контаминантов различного происхождения).

Экономический аспект также играет важную роль в обеспечении безопасности пищевой продукции и сырья. Наглядный пример демонстрирует корреляция между уровнем потребления контаминированных продуктов афлатоксинами (арахис, зерновые итд.) и заболеваемостью афлатоксикозом, в некоторых странах Африки (где у населения почти в 100% случаев выявляются циррозное поражение печени и/или рак печени) и западной Европы (единичные случаи)[25]. Данная корреляция показывает на сколько может быть различными уровни продовольственной безопасности и медицины в государствах.

Проблема контаминации пищевых продуктов по мнению Всемирной организации продовольствия (ФАО) является одной из главнейших проблем человечества.

Безопасность пищевых продуктов

Под безопасностью пищевых продуктов понимается отсутствие опасности для здоровья и жизни человека при употреблении их, как с точки зрения опасности острого патофизиологического воздействия (пищевые интоксикации или токсоинфекции), так и с точки зрения опасности последствий отдалённого, хронического или долговременного воздействия (канцерогенность, мутагенное воздействие, иммунодепрессивный эффект миелотоксичность итд.).

Пищевые продукты и сырьё являются источниками контаминантов, что влечёт за собой множественные риски для здоровья или жизни потребителя, вследствие этого необходимо проводить комплекс мер по обеспечению безопасности данной категории продуктов, к которым относят деконтаминацию. Деконтаминация как технологический процесс, направлена на удаление или полную инактивацию контаминантов в пищевых продуктах или сырье, осуществляемую при помощи механических, физических, химических и/или комбинированных (смешанных) методов.

Механические методы деконтаминации

Механические методы деконтаминации наиболее простые и доступные, представляют собой использование механических процессов очистки, таких, как фильтрование или баромембранные процессы. Фильтрование позволяет очистить пищевые продукты от твёрдых частиц химических контаминантов. Баромембранные процессы служат для более глубокой очистки продукта, посредством обратного осмоса и ультрафильтрации.

Физические методы деконтаминации

Физические методы деконтаминации — использование теплового и волнового излучения. Тепловые или термические методы основываются на нагревании пищевых продуктов до определённой температуры, как правило кратковременно в специальных устройствах — пастеризаторах, стерилизаторах или автоклавах, при этом, процесс нагрева происходит с увеличением давления. Также к этому методу относят криоконсервацию, в результате которой происходит глубокая заморозка пищевых продуктов (производится жидким азотом).

Волновые методы основываются на применении электромагнитного излучения с высокой энергией, как правило, такие виды излучения имеют короткие длины волн, к ним относятся: УФ-лучи, рентгеновское или гамма-излучение. Большинство биологических агентов (бактерии, простейшие, микроскопические грибы) очень чувствительны к подобному роду воздействиям (УФ-лучи), что делает волновые процессы эффективными. Однако применение в процессе деконтаминации пищевых продуктов рентгеновского или более агрессивного гамма-излучения во многих странах запрещено.

Химические методы деконтаминации

Поваренная соль или хлорид натрия является одним из самых распространённых консервантов.

Химические методы деконтаминации — применение химических соединений, предотвращающих контаминацию пищевых продуктов биологическими агентами (условно-патогенные, патогенные бактерии, микроскопические плесневые грибы, биологически-активные продукты их метаболизма итд.). К таким соединениям относятся широко используемые консерванты, как, например, некоторые органические кислоты (уксусная, пропионовая, бензойная[26], сорбиновая итд.) и/или их соли (бензоат натрия, сорбат калия[27] итд.), а также поваренная соль (хлорид натрия), этиловый спирт, мёд или сахар (в высоких концентрациях 65-80%). Консерванты создают неблагоприятную среду, подавляя рост, развитие и размножение биологических агентов (обладают бактериостатическим и фунгистатическим действиями).

Использование агрессивных химических соединений, таких, как аммиак, формальдегид, гипохлорит натрия. Формальдегидом обрабатывают зёрна злаковых культур, используют в качестве фунгицида, однако, его наличие даже остаточного количества в зернах не допустимо. Гипохлорит натрия NaOCl, ввиду своих сильных окислительных свойств (молекула неустойчивая и выделяет сильнейший окислитель — атомарный кислород), также применяют в качестве деконтаминанта зерна, защищая его от опасных микромицетов (рода аспергилл, пеницилл, фузариум и т. д.). При этом гипохлорит натрия отлично инактивирует множественные токсины — ботулинистический, токсины морских животных, микотоксины и др[28].

Комбинированные методы деконтаминации

Комбинированные или смешанные методы деконтаминации представляют собой одновременное применение нескольких методов, например, физических совместно с химическими, тем самым повышая эффективность процесса.

Обеспечение качества и безопасности пищевых продуктов

Обеспечение качества и безопасности пищевых продуктов является основной целью сохранения полноценного здоровья человека. Представляет собой комплекс мер, направленных на соответствие пищевых продуктов международным стандартам сертификации, включая этапы производства, транспортировки и хранения. Одним из таких стандартов является система ХАССП, внедрение которой на пищевом производстве позволяет максимально снизить все угрозы и риски, возникающие непосредственно во время процесса производства, повысить качество продукта и сохранить пищевую ценность[29].

Примечания

  1. Роева Н.Н. Безопасность продовольственных продуктов. М.: МГУТУ, 2009.
  2. Type I host resistance and Trichothecene Accumulation in Fusarium-infected Wheat Heads // American Journal of Agricultural and Biological Sciences. — 2011. — 1 февраля (т. 6, № 2). С. 231—241. ISSN 1557-4989. DOI:10.3844/ajabssp.2011.231.241. [исправить]
  3. Beyer M., Klix M. B., Klink H., Verreet J.-A. Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain — a review // Journal of Plant Diseases and Protection. — 2006. — Декабрь (т. 113, № 6). С. 241—246. ISSN 1861-3829. DOI:10.1007/BF03356188. [исправить]
  4. Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. DOI:10.1016/j.taap.2009.10.008. PMID 19850059. [исправить]
  5. Соланин // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). СПб., 1890—1907.
  6. Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study. The Lancet.
  7. Нельсон Д., Кокс М. Основы биохимии Ленинджера. М.: БИНОМ, 2011. — Т. II.
  8. Страйер Л. Биохимия. М.: Мир, 1985. — Т. 3. — С. З24. — 400 с.
  9. Huot, R. I.; Armstrong, D. L.; Chanh, T. C. (June 1989). “Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin”. Journal of Clinical Investigation. 83 (6): 1821—1826. DOI:10.1172/JCI114087. PMC 303901. PMID 2542373.
  10. Hazard Information Bulletin — Dimethylmercury. OSHA Safety and Health Information Bulletins (SHIBs), 1997—1998
  11. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Изд. 7-е, пер. и доп. В трех томах. Том I. Органические вещества. Под ред. засл. деят. науки проф. Н. В. Лазарева и докт. мед. наук Э. Н. Левиной. Л., «Химия», 1976. 592 стр., 27 табл., библиография —1850 названий.
  12. Kasper, Dennis L.et al. (2004) Harrison’s Principles of Internal Medicine, 16th ed., McGraw-Hill Professional, p. 618, ISBN 0071402357.
  13. Smith, Martyn T. (2010). “Advances in understanding benzene health effects and susceptibility”. Ann Rev Pub Health. 31: 133—48. DOI:10.1146/annurev.publhealth.012809.103646.
  14. Vale A (2007). “Methanol”. Medicine. 35 (12): 633—4. DOI:10.1016/j.mpmed.2007.09.014.
  15. http://www.epa.gov/chemfact/s_methan.txt «Humans — Ingestion of 80 to 150 mL of methanol is usually fatal to humans (HSDB 1994).»
  16. International Agency for Research on Cancer. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. — Lyon : IARC, 1997. — Vol. 69. ISBN 92-832-1269-X.
  17. Agrios, George N. Plant Pathology: Fifth Edition. — Elsevier Academic Press, 2005. — P. 922. ISBN 0-12-044565-4.
  18. Paul M Dewick. Medicinal Natural Products. A Biosynthetic Approach. Second Edition. — Wiley, 2002. — С. 370—372. — 515 с. ISBN 0471496405.
  19. Орехов А. П. Химия алкалоидов. — Изд.2. М.: АН СССР, 1955. — С. 627. — 859 с.
  20. Cristina J, Costa-Mattioli M (August 2007). “Genetic variability and molecular evolution of hepatitis A virus”. Virus Res. 127 (2): 151—157. DOI:10.1016/j.virusres.2007.01.005. PMID 17328982. Используется устаревший параметр |month= (справка)
  21. А.И. Коротяев, С.А. Бабичев. Медицинская микробиология, иммунология и вирусология. — СПб: СпецЛит, 2010. — С. 1062-1064. — 1992 с. ISBN 978-5-299-00425-0.
  22. Advances in Agronomy. — Academic Press, 2013-01-08. — P. 159–. ISBN 978-0-12-407798-0.
  23. Immunodeficiency disorders: MedlinePlus Medical Encyclopedia (англ.). medlineplus.gov.
  24. NCI Dictionary of Cancer Terms (англ.). National Cancer Institute.
  25. География раковых заболеваний - Популярные статьи - Онкология - Энциклопедия - MedPortal.ru
  26. A D Warth (1 December 1991). “Mechanism of action of benzoic acid on Zygosaccharomyces bailii: effects on glycolytic metabolite levels, energy production, and intracellular pH”. Appl Environ Microbiol. 57 (12): 3410—4. PMC 183988. PMID 1785916.
  27. Nordic Food Additive Database Архивная копия от 2 мая 2008 на Wayback Machine Nordic Working Group on Food Toxicology and Risk Assessment.
  28. Biological Safety: Principles and Practices / Edited by Fleming D. O., Hunt D. L.. — Third edition. — Washington: ASM Press, 200o. — P. 269. ISBN 1-55581-180-9.
  29. Система управления безопасностью пищевых продуктов - In.Business World

Данная страница на сайте WikiSort.ru содержит текст со страницы сайта "Википедия".

Если Вы хотите её отредактировать, то можете сделать это на странице редактирования в Википедии.

Если сделанные Вами правки не будут кем-нибудь удалены, то через несколько дней они появятся на сайте WikiSort.ru .




Текст в блоке "Читать" взят с сайта "Википедия" и доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Другой контент может иметь иную лицензию. Перед использованием материалов сайта WikiSort.ru внимательно изучите правила лицензирования конкретных элементов наполнения сайта.

2019-2024
WikiSort.ru - проект по пересортировке и дополнению контента Википедии